
Lecture 2: Array Mathematical Operations, Random
Numbers & Symbolic Math

LEBANESE AMERICAN UNIVERSITY
School of Engineering

Department of Electrical and Computer Engineering

ELE443 Control System LAB

Fall 2013

Joe Khalifeh

Addition & Subtraction

2

 Addition and subtraction are performed between matrices
having the same dimensions.

 A=[7 5 9;2 3 6]

 A =
 7 5 9
 2 3 6

 B=[4 8 1;3 5 4]

 B =
 4 8 1
 3 5 4

 C=A+B D=A-B

 C = D =
 11 13 10 3 -3 8
 5 8 10 -1 -2 2

Must have the

same dimensions

Array Multiplication

3

 Matrix multiplication is defined for matrices A and B such that the number
of columns of A is equal to the number of rows of B.

 Let A be m-by-n matrix and B is a p-by-q matrix. The matrix multiplication
A*B is defined iff n=p.

 In this case, the resulting matrix C=A*B is an m-by-q matrix.

 Note that matrix multiplication is not commutative.











232221

131211

aaa

aaa
A



















3231

2221

1211

bb

bb

bb

B















322322221221312321221121

321322121211311321121111
*

babababababa

babababababa
BA

Array Multiplication

4

 Consider the following Example:

 A=[7 8 9;3 2 8;5 4 -2];

 B=[1;-9;3];

 C=A*B

 C = -38

 9

 -37

A(3x3)*B(3x1)

=C(3x1)

Inverse of a matrix

5

 The inverse of matrix M is denoted by M-1 and is defined such that M*M-1=

M-1*M=I where I is the identity matrix.

 M is invertible (i.e. M-1 exists) iff M is nonsingular (i.e. it has a nonzero

determinant)

 The inverse of M is calculated using the command inv(M).

 Consider the following examples

A=[1 0 0;0 2 1;2 -2 1]

A= 1 0 0

 0 2 1

 2 -2 1
det(A)

ans =4

inv(A)

Ans= 1 0 0

 0.5 0.25 -0.25

 -1 0.5 0.5

A*inv(A)

ans = 1 0 0

 0 1 0

 0 0 1

E-B-E Operations

6

 Element by element E-B-E operations are performed by
typing a dot (.) before the operator.

 Addition and subtraction are E-B-E operations.

 E-B-E multiplication, division and power are done
between matrices having the same dimensions.

 321 aaaA  321 bbbB 

 
 

 321

321

332211

332211

.^

////.

*.

bbb
aaaBA

bababaBA

bababaBA







Array Analysis

7

Function Description Example

mean(V)

For vectors, MEAN(V) is the

mean value of the elements in V.

if V is a matrix then MEAN(V)

will return a vector containing

the mean of each row)

V=[5 8 9 10];

mean(V)=8

A=[1 3;2 1]

mean(V)=[2 1.5]

mx=max(M)

mn=min(M)

For vectors, mx (mn) is the

largest (smallest) element in X.

For matrices, mx (mn) is a row

vector containing the maximum

(minimum) element from each

column.

M = 2 3 4

 5 8 9

 -1 0 7

max(M)

ans =5 8 9

rank(M)

provides an estimate of the

number of linearly

 independent rows or

columns of a matrix A.

M=[1 7 8;2 6 4];

rank(M)

ans =2

Array Analysis

8

Function Description Example

rref(M)
produces the reduced row

echelon form of A.

M=[1 7 8;2 6 4];

rref(M)

ans = 1 0 -2.5

 0 1 1.5

[V,D] = eig(X)

produces a diagonal matrix V of

eigenvalues and a full matrix D

whose columns are the

corresponding eigenvectors.

 A=[1 3;2 1]

[D,V]=eig(A)

D = 0.7746 -0.7746

 0.63246 0.63246

V = 3.4495 0

 0 -1.4495

sum(X)
is the sum of the elements of

vector X.

X=[1 2 3];

S=sum(X)

S =6

Array Analysis (Application)

9

Function Description Example

cumsum(x)

returns the cumulative sum along

different dimensions of an array.

It can be used for numerical

integration.

dt=0.01;

t=-2:dt:2;

 f=0.5*(sign(t)+1);

 F=cumsum(f)*dt;

diff(x)

calculates differences between

adjacent elements of x.

It can be used for numerical

differentiation.

Note: if size(x,2)=n, then

size(diff(x),2)=n-1.

 dt=1e-3;

t=0:dt:4;

 f=t.^2;

Df=diff(f)/dt;

 t_d=t(1:size(t,2)-1);

 plot(t,f,t_d,Df),grid

Numerical Integration of a function

10

Numerical differentiation of a function

11

Array Analysis

12

Function Description Example

expm(M)
is the matrix exponential of

the square matrix X.

M=[2 1;5 -4];

expm(M)

ans =13.976 2.0718

 10.359 1.5453

exp(M)
computes the exponential

of X element-by-element

M=[2 1;5 -4];

exp(M)

ans = 7.3891 2.7183

 148.41 0.018316

Array Analysis

13

 Note that matrix exponential (expm in MATLAB) is
computed according to Taylor series expansion of
exponential function, where the operand is a matrix
and not a scalar.

 That’s why expm is only applied to square matrices
because it’s a linear combination of power of
matrices.







0

32

!
...

!3!2
)exp(

i

i

i

MMM
MIM

Array Analysis

14

 std(V): returns the standard deviation of the elements of
vector V.

 median(V): For vectors, median(V) is the median value
of the elements in V.

 sort(X): For vectors, it sorts the elements of X in
ascending order. For matrices, it sorts each column of X
in ascending order.

 det(M): returns the determinant of the matrix M.

 dot(V1,V2): returns the scalar product of the vectors V1
and V2

 cross(V1,V2): returns the cross product of the vectors
V1 and V2.

Random numbers

15

 “rand” function generates uniformly distributed pseudo-
random numbers.
 random numbers are between 0 and 1.

 rand(N)
 returns an N-by-N matrix containing pseudo-random values drawn

from a uniform distribution on the unit interval i.e. [0;1].

 rand(M,N)
 returns a random M-by-N matrix in the range [0 1]

 Generate random numbers in the interval [a b], let:
a=2; b=6;

 (b-a)*rand(1,5)+a %generates 5 numbers

 ans = [3.6746 5.3849 4.1006 2.8106 4.6885]
 1-by-5 matrix.

Random numbers

16

 randint: Generate matrix of uniformly distributed
random integers.

 randint(M,N,[a,b]) generates an M-by-N in a given
range (between a and b, a and b included).
 randint(2,3,[0,5])

 ans =

 0 4 0

 9 7 8

 randn: Generates normally distributed random
numbers.

Random numbers

17

 randsrc: Used for generating non-uniform distributed
random numbers.

 randsrc(M,N,[A,B,C;p0,p1,p2])
 Returns a M-by-N matrix having elements ‘A’, ‘B’, and ‘C’ with a

probabilities p0, p1 and p2 respectively.

 As an Example:
 data=randsrc(2,3,[0,1;0.2,0.8])

 data =

 1 0 1

 1 1 1

 randperm(n): returns a random permutation of the integers 1:n.

 randperm(5)
ans = 5 2 3 4 1

Symbolic Math

18

 It defines variables that don’t have necessarily a defined scalar or
numerical value.

 Symbolic objects can be used as independent variables.

 For Example we can use the command syms such that:
 syms x y z

 Therefore x, y and z are three Symbolic Objects.

 A symbolic object can be:
 A variable with no pre-assigned numerical value.

 Ex: syms x y t
 A number.

 Ex: a=sym(2)
 An expression made of symbolic variable/numbers.

 Ex: syms x y; z=sqrt(x+y)

 A symbolic expression is a mathematical expression made
of one or several symbolic objects.

Creating Symbolic Objects

19

 We use the commands sym and syms to create
symbolic objects.

 To create one Symbolic Object:
 a=sym(2)

 a has a symbolic-numerical value

 b=sym(‘gamma’)

 b has a symbolic-string value.

 To create multiple symbolic objects:
 syms x y z

Symbolic v.s Numerical

20

 Symbolic objects: a and b

 a=sym(1);

 b=sym(2);

 f=a/b

 f = ½

 Numerical objects: A and B:

 A=1;

 B=2;

 F=A/B

 F =0.500

Symbolic to Numeric

21

 Some symbolic expressions can have numerical values resulting
from numerical operations.

 To convert from symbolic to numerical objects, we use the
command double(S).

 Example:

a=sym(3);

b=1/a

b = 1/3

B=double(b)

B = 0.33333

findsym command

22

 Used to find and enumerate symbolic variables
present in an expression.

 Command Syntax:

 findsym(S)

 Displays all symbolic variables found in S, in alphabetical order.

 findsym(S,n)
 Displays the first n symbolic variables found in S, in default order

 Default order for one letter variables: Start from x and list the others in the
order of their closeness to x.

subs command

23

 To substitute a variable in a symbolic expression we use the
command subs. Consider the following example:
 syms x y;

 f=2*x+log(y);
 subs(f,x,2);
 ans = 4+log(y)
 subs(f,[x y],[2 1])
 ans = 4

 The Factor command:

 sym x

 G=-1/2*exp(-x)*cos(x)-1/2*exp(-x)*sin(x)

 factor(G)

 ans = -1/2*exp(-x)*(cos(x)+sin(x))

 See also: expand, simplify, pretty.

Solving equations (Symbolic)

24

 Solving algebraic equations.

 Example (2 equations, 2 unknowns)

 [x y]=solve('2*x+a*y-1=0','b*x+2*y=0')

 x =-2/(b*a-4)

 y =1/(b*a-4)*b

 Solving Differential equations:

 ‘Dn’ represents the nth order derivative operator

 Consider the Example: x’’+a2x=0, IC: x(0)=1, x’(0)=1

 x = dsolve('D2x+a^2*x=0','x(0)=1, Dx(0)=1')

 x = 1/a*sin(a*t)+cos(a*t)

Calculating Derivatives (Symbolic)

25

 Partial Derivatives. Consider the function given by:
 f = sin(x^2+y)

 Partial derivative w.r.t. x

 f_x=diff(f,x)

 f_x =2*cos(x^2+y)*x

 2nd Partial derivative w.r.t. x

 f2_x=diff(f,x,2)

 f2_x = -4*sin(x^2+y)*x^2+2*cos(x^2+y)

Calculating Integrals (Symbolic)

26

 Integration. Consider the function given by:
 f=sin(x)*exp(-x)

 Definite integral (i.e. Integrate f(x) over the range [0,2])
 F=int(f,x,0,2)

 F =-1/2*exp(-2)*cos(2)-1/2*sin(2)*exp(-2)+1/2

 Indefinite Integral
 G=int(f,x)

 G =-1/2*exp(-x)*cos(x)-1/2*sin(x)*exp(-x)

Inline function

27

 Used for multivariable expressions.

 Returns a function that takes several arguments. As an
example:

 D=inline('2*x*y+sin(x)','x','y')

 D = Inline function:

 D(x,y) = 2*x*y+sin(x)

 D(1,2)

 ans = 4.8415

