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Addition & Subtraction 
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 Addition and subtraction are performed between matrices 
having the same dimensions. 
 
 A=[7 5 9;2 3 6] 

     A = 
      7     5     9 
      2     3     6 

 
 B=[4 8 1;3 5 4] 

     B = 
      4     8     1 
      3     5     4 

 
 C=A+B    D=A-B 

     C =    D = 
     11    13    10   3    -3    8 
      5       8    10   -1   -2    2 

Must have the 

same dimensions 



Array Multiplication 
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 Matrix multiplication is defined for matrices A and B such that the number 
of columns of A is equal to the number of rows of B. 

 Let A be m-by-n matrix and B is a p-by-q matrix. The matrix multiplication 
A*B is defined iff n=p. 

 In this case, the resulting matrix C=A*B is an m-by-q matrix. 

 Note that matrix multiplication is not commutative. 
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Array Multiplication 
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 Consider the following Example: 
 

 A=[7 8 9;3 2 8;5 4 -2]; 

    B=[1;-9;3]; 
 

    C=A*B 

    C =  -38 

             9 

            -37 

A(3x3)*B(3x1) 

=C(3x1) 



Inverse of a matrix 
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 The inverse of matrix M is denoted by M-1 and is defined such that M*M-1= 

M-1*M=I where I is the identity matrix. 

 M is invertible (i.e. M-1 exists) iff M is nonsingular (i.e. it has a nonzero 

determinant) 

 The inverse of M is calculated using the command inv(M). 

 Consider the following examples 

A=[1 0 0;0 2 1;2 -2 1] 

A=  1     0     0 

    0     2     1 

    2    -2     1 
det(A) 

ans =4 

 

inv(A) 

Ans=    1            0            0 

        0.5        0.25      -0.25 

         -1          0.5          0.5  

A*inv(A) 

ans = 1     0     0 

 0     1     0 

 0     0     1 



E-B-E Operations 
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 Element by element E-B-E operations are performed by 
typing a dot (.) before the operator. 

 Addition and subtraction are E-B-E operations. 

 E-B-E multiplication, division and power are done 
between matrices having the same dimensions. 
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Array Analysis 
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Function Description Example 

mean(V) 

For vectors, MEAN(V) is the 

mean value of the elements in V. 

if V is a matrix then MEAN(V) 

will return a vector containing 

the mean of each row) 

V=[5 8 9 10]; 

mean(V)=8 

A=[1 3;2 1]  

mean(V)=[2   1.5] 

mx=max(M) 

mn=min(M) 

For vectors, mx (mn)  is the 

largest (smallest) element in X. 

For matrices, mx (mn) is a row 

vector containing the maximum 

(minimum) element from each 

column. 

M =   2     3     4 

         5     8     9 

         -1     0     7 

max(M) 

ans =5     8     9 

rank(M) 

provides an estimate of the 

number of linearly 

    independent rows or 

columns of a matrix A. 

M=[1 7 8;2 6 4]; 

rank(M) 

ans =2 



Array Analysis 
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Function Description Example 

rref(M) 
produces the reduced row 

echelon form of A. 

M=[1 7 8;2 6 4]; 

rref(M) 

ans = 1      0     -2.5 

         0      1      1.5 

[V,D] = eig(X) 

produces a diagonal matrix V of 

eigenvalues and a full matrix D 

whose columns are the 

corresponding eigenvectors. 

 A=[1 3;2 1] 

[D,V]=eig(A) 

D =  0.7746      -0.7746 

        0.63246      0.63246 

V =    3.4495            0 

            0           -1.4495 

sum(X) 
is the sum of the elements of 

vector X. 

X=[1 2 3];  

S=sum(X) 

S =6 



Array Analysis (Application) 

9 

Function Description Example 

cumsum(x) 

returns the cumulative sum along 

different dimensions of an array. 

It can be used for numerical 

integration. 

dt=0.01; 

t=-2:dt:2; 

 f=0.5*(sign(t)+1); 

 F=cumsum(f)*dt; 

diff(x) 

calculates differences between 

adjacent elements of x. 

It can be used for numerical 

differentiation. 

Note: if size(x,2)=n, then 

size(diff(x),2)=n-1. 

 dt=1e-3; 

t=0:dt:4; 

 f=t.^2; 

Df=diff(f)/dt; 

 t_d=t(1:size(t,2)-1); 

 plot(t,f,t_d,Df),grid 



Numerical Integration of a function 

10 



Numerical differentiation of a function 
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Array Analysis 
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Function Description Example 

expm(M) 
is the matrix exponential of 

the square matrix X. 

M=[2 1;5 -4]; 

expm(M) 

ans =13.976       2.0718 

       10.359       1.5453 

exp(M) 
computes the exponential 

of X element-by-element 

M=[2 1;5 -4]; 

exp(M) 

ans = 7.3891       2.7183 

          148.41     0.018316 



Array Analysis 
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 Note that matrix exponential (expm in MATLAB) is 
computed according to Taylor series expansion of 
exponential function, where the operand is a matrix 
and not a scalar. 

 

 

 

 That’s why expm is only applied to square matrices 
because it’s a linear combination of power of 
matrices. 
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Array Analysis 
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 std(V): returns the standard deviation of the elements of 
vector V. 

 median(V): For vectors, median(V) is the median value 
of the elements in V. 

 sort(X): For vectors, it sorts the elements of X in 
ascending order. For matrices, it sorts each column of X 
in ascending order. 

 det(M): returns the determinant of the matrix M. 

 dot(V1,V2): returns the scalar product of the vectors V1 
and V2 

 cross(V1,V2): returns the cross product of the vectors 
V1 and V2. 

 



Random numbers 
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 “rand” function generates uniformly distributed pseudo-
random numbers. 
 random numbers are between 0 and 1. 

 rand(N) 
 returns an N-by-N matrix containing pseudo-random values drawn 

from a uniform distribution on the unit interval i.e. [0;1]. 

 rand(M,N) 
 returns a random M-by-N matrix in the range [0 1] 

 

 Generate random numbers in the interval [a b], let:  
a=2; b=6; 

 (b-a)*rand(1,5)+a   %generates 5 numbers 

 ans = [3.6746  5.3849  4.1006  2.8106  4.6885] 
 1-by-5 matrix. 



Random numbers 
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 randint: Generate matrix of uniformly distributed 
random integers.  

 randint(M,N,[a,b]) generates an M-by-N in a given 
range (between a and b, a and b included). 
 randint(2,3,[0,5]) 

    ans = 

      0     4     0 

      9     7     8 
 

 randn: Generates normally distributed random 
numbers. 



Random numbers 
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 randsrc: Used for generating non-uniform distributed 
random numbers.  

 randsrc(M,N,[A,B,C;p0,p1,p2]) 
 Returns a M-by-N matrix having elements ‘A’, ‘B’, and ‘C’ with a 

probabilities p0, p1 and p2 respectively. 

 As an Example: 
  data=randsrc(2,3,[0,1;0.2,0.8]) 

     data = 

      1     0     1 

      1     1     1 
 

 randperm(n): returns a random permutation of the integers 1:n. 

 randperm(5)  
ans = 5     2     3     4     1 

 



Symbolic Math 
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 It defines variables that don’t have necessarily a defined scalar or 
numerical value. 

 Symbolic objects can be used as independent variables. 

 For Example we can use the command syms such that: 
 syms x y z 

 Therefore x, y and z are three Symbolic Objects. 
 

 A symbolic object can be: 
 A variable with no pre-assigned numerical value.  

 Ex: syms x y t 
 A number.  

 Ex: a=sym(2) 
 An expression made of symbolic variable/numbers.  

 Ex: syms x y; z=sqrt(x+y) 
 

 A symbolic expression is a mathematical expression made 
of one or several symbolic objects. 



Creating Symbolic Objects 
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 We use the commands sym and syms to create 
symbolic objects. 

 To create one Symbolic Object: 
 a=sym(2) 

 a has a symbolic-numerical value 

 b=sym(‘gamma’) 

 b has a symbolic-string value. 
 

 To create multiple symbolic objects: 
 syms x y z 



Symbolic v.s Numerical 
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 Symbolic objects: a and b 

  a=sym(1); 

  b=sym(2); 

  f=a/b 

  f = ½ 
 

 Numerical objects: A and B: 

 A=1; 

 B=2; 

 F=A/B 

 F =0.500 



Symbolic to Numeric 
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 Some symbolic expressions can have numerical values resulting 
from numerical operations. 
 

 To convert from symbolic to numerical objects, we use the 
command double(S). 
 

 Example: 
 
a=sym(3); 

b=1/a 

b  = 1/3 

B=double(b) 

B = 0.33333 



findsym command 
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 Used to find and enumerate symbolic variables 
present in an expression. 
 

 Command Syntax: 
 
 findsym(S) 

 Displays all symbolic variables found in S, in alphabetical order. 
 

 findsym(S,n) 
 Displays the first n symbolic variables found in S, in default order 

 Default order for one letter variables: Start from x and list the others in the 
order of their closeness to x. 

 



subs command 
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 To substitute a variable in a symbolic expression we use the 
command subs. Consider the following example: 
 syms x y; 

     f=2*x+log(y); 
     subs(f,x,2); 
     ans = 4+log(y) 
     subs(f,[x y],[2 1]) 
     ans = 4 

 The Factor command: 

 sym x 

     G=-1/2*exp(-x)*cos(x)-1/2*exp(-x)*sin(x) 

     factor(G) 

     ans  = -1/2*exp(-x)*(cos(x)+sin(x)) 

 See also: expand, simplify, pretty. 



Solving equations (Symbolic) 
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 Solving algebraic equations. 

 Example (2 equations, 2 unknowns) 

 [x y]=solve('2*x+a*y-1=0','b*x+2*y=0') 

     x =-2/(b*a-4) 

     y =1/(b*a-4)*b 
 

 Solving Differential equations: 

 ‘Dn’ represents the nth order derivative operator 

 Consider the Example:  x’’+a2x=0,  IC: x(0)=1, x’(0)=1 

 x = dsolve('D2x+a^2*x=0','x(0)=1, Dx(0)=1') 

     x = 1/a*sin(a*t)+cos(a*t) 

 



Calculating Derivatives (Symbolic) 
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 Partial Derivatives. Consider the function given by: 
 f = sin(x^2+y) 

 

 Partial derivative w.r.t. x 

 f_x=diff(f,x) 

    f_x =2*cos(x^2+y)*x 
 

 2nd Partial derivative w.r.t. x 

 f2_x=diff(f,x,2) 

    f2_x = -4*sin(x^2+y)*x^2+2*cos(x^2+y) 
 

  



Calculating Integrals (Symbolic) 
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 Integration. Consider the function given by: 
 f=sin(x)*exp(-x) 

 

 Definite integral (i.e. Integrate f(x) over the range [0,2]) 
 F=int(f,x,0,2) 

    F =-1/2*exp(-2)*cos(2)-1/2*sin(2)*exp(-2)+1/2 
 

 Indefinite Integral 
 G=int(f,x) 

    G =-1/2*exp(-x)*cos(x)-1/2*sin(x)*exp(-x) 



Inline function 
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 Used for multivariable expressions. 

 Returns a function that takes several arguments. As an 
example: 
 
 D=inline('2*x*y+sin(x)','x','y') 

    D =   Inline function: 

             D(x,y) = 2*x*y+sin(x) 
 

 D(1,2) 

    ans = 4.8415 

  


