

#### LEBANESE AMERICAN UNIVERSITY School of Engineering Department of Electrical and Computer Engineering

ELE443 Control System LAB Fall 2013

# Lecture 2: Array Mathematical Operations, Random Numbers & Symbolic Math

Joe Khalifeh

# Addition & Subtraction

 Addition and subtraction are performed between matrices having the same dimensions.

| A=[]        | 759         | ;2 3 6] |  |
|-------------|-------------|---------|--|
| A =         |             | _       |  |
| 7           | 5           | 9       |  |
| 2           | 3           | 6       |  |
| B=[4<br>B = | 81          | ;3 5 4] |  |
| 4           | 8           | 1       |  |
| 3           | 5           | 4       |  |
| C=A<br>C =  | <b>∖+</b> B |         |  |
|             | 13          | 0       |  |
| 5           | 8           | 10      |  |

Must have the same dimensions

# Array Multiplication

- Matrix multiplication is defined for matrices A and B such that the number of columns of A is equal to the number of rows of B.
- Let A be m-by-n matrix and B is a p-by-q matrix. The matrix multiplication A\*B is defined iff n=p.
- In this case, the resulting matrix C=A\*B is an m-by-q matrix.
- Note that matrix multiplication is not commutative.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$$

$$A * B = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}$$

Array Multiplication

Consider the following Example:

A=[7 8 9;3 2 8;5 4 -2]; B=[1;-9;3];

C=A\*B C = -38 9 -37 A(3x**3**)\*B(**3**x1) =C(3x1)

#### Inverse of a matrix

- The inverse of matrix M is denoted by M<sup>-1</sup> and is defined such that M\*M<sup>-1</sup>= M<sup>-1</sup>\*M=I where I is the identity matrix.
- M is invertible (i.e. M<sup>-1</sup> exists) iff M is nonsingular (i.e. it has a nonzero determinant)
- The inverse of M is calculated using the command inv(M).
- Consider the following examples

| A=[1 0 0;0 2 1;2 -2 1] | inv(A)         |
|------------------------|----------------|
| A= 1 0 0               | Ans= 1 0 0     |
| 0 2 1                  | 0.5 0.25 -0.25 |
| 2 -2                   | -1 0.5 0.5     |
| det(A)                 | A*inv(A)       |
| ans $=4$               | ans = 1 0 0    |
|                        | 0 1 0          |
|                        | 0 0 1          |

#### **E-B-E** Operations

- Element by element E-B-E operations are performed by typing a dot (.) before the operator.
- Addition and subtraction are E-B-E operations.
- E-B-E multiplication, division and power are done between matrices having the same dimensions.

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \quad B = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$$
$$A \cdot B = \begin{bmatrix} a_1b_1 & a_2b_2 & a_3b_3 \end{bmatrix}$$
$$A \cdot B = \begin{bmatrix} a_1/b_1 & a_2/b_2 & a_3/b_3 \end{bmatrix}$$
$$A \cdot B = \begin{bmatrix} a_1^{b_1} & a_2^{b_2} & a_3^{b_3} \end{bmatrix}$$

| Function               | Description                                                                                                                                                                  | Example                                                             |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| mean(V)                | For vectors, MEAN(V) is the<br>mean value of the elements in V.<br>if V is a matrix then MEAN(V)<br>will return a vector containing<br>the mean of each row)                 | V=[5 8 9 10];<br>mean(V)=8<br>A=[1 3;2 1]<br>mean(V)=[2 1.5]        |
| mx=max(M)<br>mn=min(M) | For vectors, mx (mn) is the<br>largest (smallest) element in X.<br>For matrices, mx (mn) is a row<br>vector containing the maximum<br>(minimum) element from each<br>column. | M = 2  3  4<br>5 \ 8 \ 9<br>-1 \ 0 \ 7<br>max(M)<br>ans = 5 \ 8 \ 9 |
| rank(M)                | provides an estimate of the<br>number of linearly<br>independent rows or<br>columns of a matrix A.                                                                           | M=[1 7 8;2 6 4];<br>rank(M)<br>ans =2                               |

| Function       | Description                                                                                                                | Example                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| rref(M)        | produces the reduced row<br>echelon form of A.                                                                             | M=[1 7 8;2 6 4];<br>rref(M)<br>ans = 1 0 -2.5<br>0 1 1.5                                     |
| [V,D] = eig(X) | produces a diagonal matrix V of<br>eigenvalues and a full matrix D<br>whose columns are the<br>corresponding eigenvectors. | A=[1 3;2 1] $[D,V]=eig(A)$ $D = 0.7746 -0.7746$ $0.63246 0.63246$ $V = 3.4495 0$ $0 -1.4495$ |
| sum(X)         | is the sum of the elements of vector X.                                                                                    | X=[1 2 3];<br>S=sum(X)<br>S =6                                                               |

# Array Analysis (Application)

| Function  | Description                                                                                                                                                                | Example                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| cumsum(x) | returns the cumulative sum along<br>different dimensions of an array.<br>It can be used for numerical<br>integration.                                                      | dt=0.01;<br>t=-2:dt:2;<br>f=0.5*(sign(t)+1);<br>F=cumsum(f)*dt;                                      |
| diff(x)   | calculates differences between<br>adjacent elements of x.<br>It can be used for numerical<br>differentiation.<br><u>Note:</u> if size(x,2)=n, then<br>size(diff(x),2)=n-1. | dt=1e-3;<br>t=0:dt:4;<br>f=t.^2;<br>Df=diff(f)/dt;<br>t_d=t(1:size(t,2)-1);<br>plot(t,f,t_d,Df),grid |

#### Numerical Integration of a function



#### Numerical differentiation of a function



| Function | Description                                          | Example                                                           |  |
|----------|------------------------------------------------------|-------------------------------------------------------------------|--|
| expm(M)  | is the matrix exponential of<br>the square matrix X. | M=[2 1;5 -4];<br>expm(M)<br>ans =13.976 2.0718<br>10.359 1.5453   |  |
| exp(M)   | computes the exponential of X element-by-element     | M=[2 1;5 -4];<br>exp(M)<br>ans = 7.3891 2.7183<br>148.41 0.018316 |  |

Note that matrix exponential (expm in MATLAB) is computed according to Taylor series expansion of exponential function, where the operand is a matrix and not a scalar.

$$\exp(M) = I + M + \frac{M^2}{2!} + \frac{M^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{M^i}{i!}$$

That's why expm is only applied to square matrices because it's a linear combination of power of matrices.

- std(V): returns the standard deviation of the elements of vector V.
- median(V): For vectors, median(V) is the median value of the elements in V.
- sort(X): For vectors, it sorts the elements of X in ascending order. For matrices, it sorts each column of X in ascending order.
- **det(M)**: returns the determinant of the matrix M.
- dot(VI,V2): returns the scalar product of the vectors VI and V2
- cross(VI,V2): returns the cross product of the vectors VI and V2.

# Random numbers

- "rand" function generates uniformly distributed pseudorandom numbers.
  - random numbers are between 0 and 1.
- rand(N)
  - returns an N-by-N matrix containing pseudo-random values drawn from a uniform distribution on the unit interval i.e. [0;1].

#### rand(M,N)

returns a random M-by-N matrix in the range [0 1]

Generate random numbers in the interval [a b], let: a=2; b=6; (b-a)\*rand(1,5)+a %generates 5 numbers ans = [3.6746 5.3849 4.1006 2.8106 4.6885]

▶ I-by-5 matrix.

### Random numbers

- randint: Generate matrix of uniformly distributed random integers.
- randint(M,N,[a,b]) generates an M-by-N in a given range (between a and b, a and b included).
  - randint(2,3,[0,5])
    - ans =
      - 0 4 0
      - 9 7 8
- randn: Generates normally distributed random numbers.

# Random numbers

- randsrc: Used for generating non-uniform distributed random numbers.
- randsrc(M,N,[A,B,C;p<sub>0</sub>,p<sub>1</sub>,p<sub>2</sub>])
  - Returns a M-by-N matrix having elements 'A', 'B', and 'C' with a probabilities p<sub>0</sub>, p<sub>1</sub> and p<sub>2</sub> respectively.
- As an Example:

randperm(n): returns a random permutation of the integers I:n.

randperm(5) ans = 5 2 3 4 I

# Symbolic Math

- It defines variables that don't have necessarily a defined scalar or numerical value.
- Symbolic objects can be used as independent variables.
- For Example we can use the command syms such that:
  - syms x y z
  - Therefore x, y and z are three Symbolic Objects.
- A symbolic object can be:
  - A variable with no pre-assigned numerical value.
    - Ex: syms x y t
  - A number.
    - Ex: a=sym(2)
  - An expression made of symbolic variable/numbers.
    - Ex: syms x y; z=sqrt(x+y)
- A symbolic expression is a mathematical expression made of one or several symbolic objects.

# Creating Symbolic Objects

- We use the commands sym and syms to create symbolic objects.
- To create one Symbolic Object:
  - ▶ a=sym(2)
    - a has a symbolic-numerical value
  - b=sym('gamma')
    - b has a symbolic-string value.
- To create multiple symbolic objects:
  - syms x y z

# Symbolic v.s Numerical

- Symbolic objects: a and b a=sym(1); b=sym(2); f=a/b f = 1/2
- Numerical objects: A and B:
  - A=I;
  - B=2;
  - F=A/B
  - F =0.500

# Symbolic to Numeric

- Some symbolic expressions can have numerical values resulting from numerical operations.
- To convert from symbolic to numerical objects, we use the command double (S).
- Example:

a=sym(3); b=1/a b = 1/3 B=double(b) B = 0.33333  Used to find and enumerate symbolic variables present in an expression.

Command Syntax:

- findsym(S)
  - Displays all symbolic variables found in S, in alphabetical order.
- findsym(S,n)
  - Displays the first *n* symbolic variables found in S, in **default order** 
    - **Default order** for one letter variables: Start from x and list the others in the order of their closeness to x.

#### subs command

• To substitute a variable in a symbolic expression we use the command **subs**. Consider the following example:

```
syms x y;
f=2*x+log(y);
subs(f,x,2);
ans = 4+log(y)
subs(f,[x y],[2 I])
ans = 4
```

The Factor command:

```
sym x
G=-1/2*exp(-x)*cos(x)-1/2*exp(-x)*sin(x)
factor(G)
ans = -1/2*exp(-x)*(cos(x)+sin(x))
```

See also: expand, simplify, pretty.

# Solving equations (Symbolic)

- Solving algebraic equations.
- Example (2 equations, 2 unknowns)
  - [x y]=solve('2\*x+a\*y-1=0','b\*x+2\*y=0') x =-2/(b\*a-4) y =1/(b\*a-4)\*b
- Solving Differential equations:
- 'Dn' represents the n<sup>th</sup> order derivative operator
- Consider the Example:  $x''+a^2x=0$ , IC: x(0)=1, x'(0)=1
  - $x = dsolve('D2x+a^2*x=0', 'x(0)=1, Dx(0)=1')$ 
    - $x = 1/a^* sin(a^*t) + cos(a^*t)$

#### Calculating Derivatives (Symbolic)

- Partial Derivatives. Consider the function given by:
   f = sin(x^2+y)
- Partial derivative w.r.t. x
   f\_x=diff(f,x)
   f\_x=2\*cos(x^2+y)\*x
- 2<sup>nd</sup> Partial derivative w.r.t. x
   f2\_x=diff(f,x,2) f2\_x = -4\*sin(x^2+y)\*x^2+2\*cos(x^2+y)

# Calculating Integrals (Symbolic)

- Integration. Consider the function given by:
   f=sin(x)\*exp(-x)
- Definite integral (i.e. Integrate f(x) over the range [0,2])
   F=int(f,x,0,2)
   F =-1/2\*exp(-2)\*cos(2)-1/2\*sin(2)\*exp(-2)+1/2
- Indefinite Integral
  - G=int(f,x)
    G =-1/2\*exp(-x)\*cos(x)-1/2\*sin(x)\*exp(-x)

# Inline function

- Used for multivariable expressions.
- Returns a function that takes several arguments. As an example:

D(1,2) ans = 4.8415