ELE443 Control System LAB
Fall 2013

Lecture 2: Array Mathematical Operations, Random Numbers \& Symbolic Math

Joe Khalifeh

Addition \& Subtraction

- Addition and subtraction are performed between matrices having the same dimensions.

```
* A=[7 5 9;2 3 6]
    A =
        7 5 9
        2 3 6
    * B=[4 8 I;3 5 4]
        B=
    - C=A+B
        C=
        II l3 10
        5 8 10
\[
\begin{array}{lll}
D=A-B \\
D & & \\
3 & -3 & 8 \\
-1 & -2 & 2
\end{array}
\]
```


Array Multiplication

- Matrix multiplication is defined for matrices A and B such that the number of columns of A is equal to the number of rows of B.
- Let A be m-by-n matrix and B is a p-by-q matrix. The matrix multiplication $A * B$ is defined iff $n=p$.
- In this case, the resulting matrix $\mathbf{C = A * B}$ is an m-by-q matrix.
- Note that matrix multiplication is not commutative.

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right] \\
A * B & =\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right]
\end{aligned}
$$

Array Multiplication

Consider the following Example:
($A=[78$ 9;3 2 8;5 4 -2]; $B=[1 ;-9 ; 3]$;

C=A*B
$C=-38$

$$
\begin{gathered}
A(3 \times 3) * B(3 \times I) \\
=C(3 x I)
\end{gathered}
$$

9
-37

Inverse of a matrix

- The inverse of matrix M is denoted by M^{-1} and is defined such that $M^{*} M^{-1}=$ $M^{-1 *} M=I$ where I is the identity matrix.
- M is invertible (i.e. M^{-1} exists) iff M is nonsingular (i.e. it has a nonzero determinant)
- The inverse of M is calculated using the command $\operatorname{inv}(M)$.
- Consider the following examples

			$\operatorname{inv}(\mathrm{A})$				
			Ans=	1		0	0
0	2	1		0.5		0.25	-0.25
$\begin{gathered} 2 \\ \operatorname{det}(\mathrm{~A}) \\ \text { ans }=4 \end{gathered}$		1		-1		0.5	0.5
			A*inv(A)				
			ans =	1	0	0	
				0	1	0	
				0	0		

E-B-E Operations

- Element by element E-B-E operations are performed by typing a dot (.) before the operator.
- Addition and subtraction are E-B-E operations.
- E-B-E multiplication, division and power are done between matrices having the same dimensions.

$$
\begin{aligned}
A= & {\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \quad B=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] } \\
& A . * B=\left[\begin{array}{lll}
a_{1} b_{1} & a_{2} b_{2} & a_{3} b_{3}
\end{array}\right] \\
& A \cdot / B=\left[\begin{array}{lll}
a_{1} / b_{1} & a_{2} / b_{2} & a_{3} / b_{3}
\end{array}\right] \\
& A .^{\wedge} B=\left[\begin{array}{lll}
a_{1}^{b_{1}} & a_{2}^{b_{2}} & a_{3}^{b_{3}}
\end{array}\right]
\end{aligned}
$$

Array Analysis

Function	Description	Example
mean(V)	For vectors, MEAN (V) is the mean value of the elements in V . if V is a matrix then MEAN (V) will return a vector containing the mean of each row)	$\begin{gathered} \mathrm{V}=\left[\begin{array}{lll} 5 & 8 & 9 \\ \mathrm{I} \end{array}\right] ; \\ \text { mean }(\mathrm{V})=8 \\ \mathrm{~A}=\left[\begin{array}{lll} \mathrm{I} & 3 ; 2 & \mathrm{I} \end{array}\right] \\ \text { mean }(\mathrm{V})=\left[\begin{array}{ll} 2 & \mathrm{I} .5 \end{array}\right] \end{gathered}$
$\begin{aligned} & m x=\max (M) \\ & \operatorname{mn}=\min (M) \end{aligned}$	For vectors, $m x(m n)$ is the largest (smallest) element in X . For matrices, $m x(m n)$ is a row vector containing the maximum (minimum) element from each column.	$\begin{array}{ccc} M=\begin{array}{ccc} 2 & 3 & 4 \\ 5 & 8 & 9 \\ -1 & 0 & 7 \\ \max (M) & \\ \text { ans }=5 & 8 & 9 \end{array} \end{array}$
rank(M)	provides an estimate of the number of linearly independent rows or columns of a matrix A.	$\begin{gathered} M=\left[\begin{array}{ll} 178 ; 2 & 6 \end{array}\right] ; \\ \operatorname{rank}(M) \\ \text { ans }=2 \end{gathered}$

Array Analysis

Function	Description	Example
$\operatorname{rref}(M)$	produces the reduced row echelon form of A.	
$[\mathrm{V}, \mathrm{D}]=\operatorname{eig}(X)$	produces a diagonal matrix V of eigenvalues and a full matrix D whose columns are the corresponding eigenvectors.	
$\operatorname{sum}(X)$	is the sum of the elements of vector X .	$\begin{gathered} X=\left[\begin{array}{lll} 1 & 2 & 3 \end{array}\right] ; \\ S=\text { sum }(X) \\ S=6 \end{gathered}$

Array Analysis (Application)

Function	Description	Example
cumsum(X)	returns the cumulative sum along different dimensions of an array. It can be used for numerical integration.	$\begin{gathered} \mathrm{dt}=0.0 \mathrm{I} ; \\ \mathrm{t}=-2: \mathrm{dt}: 2 ; \\ \mathrm{f}=0.5^{*}(\operatorname{sign}(\mathrm{t})+\mathrm{I}) ; \\ \mathrm{F}=\text { cumsum }(\mathrm{f}) * \mathrm{dt} ; \end{gathered}$
$\operatorname{diff}(x)$	calculates differences between adjacent elements of x. It can be used for numerical differentiation. Note: if size $(x, 2)=n$, then size $(\operatorname{diff}(x), 2)=n-I$.	$\begin{gathered} \mathrm{dt}=\mathrm{le}-3 ; \\ \mathrm{t}=0: \mathrm{dt}: 4 ; \\ \mathrm{f}=\mathrm{t} . \wedge 2 ; \\ \mathrm{Df}=\operatorname{diff}(\mathrm{f}) / \mathrm{dt} ; \\ \mathrm{t} _\mathrm{d}=\mathrm{t}(\mathrm{l}: \operatorname{size}(\mathrm{t}, 2)-\mathrm{l}) ; \\ \text { plot(t,f,t_d,Df),grid } \end{gathered}$

Numerical Integration of a function

Numerical differentiation of a function

Array Analysis

Function	Description	Example
$\operatorname{expm}(M)$	is the matrix exponential of the square matrix X.	
$\exp (\mathrm{M})$	computes the exponential of X element-by-element	$\begin{array}{cc} \mathrm{M}=[2 \mathrm{I} ; 5 & -4] ; \\ \exp (\mathrm{M}) & \\ \text { ans }=7.3891 & 2.7183 \\ 148.41 & 0.018316 \end{array}$

Array Analysis

- Note that matrix exponential (expm in MATLAB) is computed according to Taylor series expansion of exponential function, where the operand is a matrix and not a scalar.

$$
\exp (M)=I+M+\frac{M^{2}}{2!}+\frac{M^{3}}{3!}+\ldots=\sum_{i=0}^{\infty} \frac{M^{i}}{i!}
$$

- That's why expm is only applied to square matrices because it's a linear combination of power of matrices.

Array Analysis

- std(V): returns the standard deviation of the elements of vector V.
- median(V): For vectors, median (V) is the median value of the elements in V .
- $\operatorname{sort}(\mathbf{X})$: For vectors, it sorts the elements of X in ascending order. For matrices, it sorts each column of X in ascending order.
- $\operatorname{det}(\mathbf{M})$: returns the determinant of the matrix M .
- $\boldsymbol{\operatorname { d o t }}(\mathbf{V I}, \mathbf{V} 2)$: returns the scalar product of the vectors VI and V2
- cross(VI,V2): returns the cross product of the vectors VI and V 2 .

Random numbers

" "rand" function generates uniformly distributed pseudorandom numbers.

- random numbers are between 0 and I.
- $\operatorname{rand}(\mathbf{N})$
- returns an N -by- N matrix containing pseudo-random values drawn from a uniform distribution on the unit interval i.e. $[0 ; 1]$.
- $\operatorname{rand}(\mathbf{M}, \mathbf{N})$
- returns a random M-by-N matrix in the range [0 I]
- Generate random numbers in the interval [ab], let: $a=2 ; b=6$;
(b-a)*rand(I,5)+a \%generates 5 numbers ans $=\left[\begin{array}{lllll}3.6746 & 5.3849 & 4.1006 & 2.8106 & 4.6885\end{array}\right]$
, I-by-5 matrix.

Random numbers

r randint: Generate matrix of uniformly distributed random integers.

- randint($\mathbf{M}, \mathbf{N},[\mathbf{a}, \mathbf{b}])$ generates an M -by-N in a given range (between a and b, a and b included).
b randint(2,3,[0,5])

```
ans =
0 4 0
9 8
```

randn: Generates normally distributed random numbers.

Random numbers

- randsrc: Used for generating non-uniform distributed random numbers.
- randsrc(M,N,[A,B,C; $\left.\left.\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}\right]\right)$
- Returns a M-by-N matrix having elements ' A ', ' B ', and ' C ' with a probabilities $\mathrm{P}_{0}, \mathrm{P}_{1}$ and P_{2} respectively.
- As an Example:
, data=randsrc(2,3,[0, $; ; 0.2,0.8])$
data $=$

1	0	1
1	1	1

- randperm(n): returns a random permutation of the integers I:n.
- randperm(5)
ans $=\begin{array}{lllll}5 & 2 & 3 & 4\end{array}$

Symbolic Math

- It defines variables that don't have necessarily a defined scalar or numerical value.
- Symbolic objects can be used as independent variables.
- For Example we can use the command syms such that:
b syms xyz
, Therefore x, y and z are three Symbolic Objects.
- A symbolic object can be:
- A variable with no pre-assigned numerical value.
- Ex: syms xyt
- A number.

Ex:a=sym(2)

- An expression made of symbolic variable/numbers.
- Ex: syms $x y ; z=s q r t(x+y)$
- A symbolic expression is a mathematical expression made of one or several symbolic objects.

Creating Symbolic Objects

- We use the commands sym and syms to create symbolic objects.
- To create one Symbolic Object:
b $a=\operatorname{sym}(2)$
- a has a symbolic-numerical value
- b=sym('gamma')
- b has a symbolic-string value.
- To create multiple symbolic objects:
- syms xyz

Symbolic v.s Numerical

- Symbolic objects: a and b $\mathrm{a}=\operatorname{sym}(\mathrm{I})$; b=sym(2);
$f=a / b$
$f=1 / 2$
- Numerical objects: A and B :

A=I;
$B=2$;
$\mathrm{F}=\mathrm{A} / \mathrm{B}$
$\mathrm{F}=0.500$

Symbolic to Numeric

- Some symbolic expressions can have numerical values resulting from numerical operations.
- To convert from symbolic to numerical objects, we use the command double (S).
- Example:
$\mathrm{a}=\operatorname{sym}(3)$;
$b=1 / a$
b $=1 / 3$
B=double(b)
$B=0.33333$

findsym command

- Used to find and enumerate symbolic variables present in an expression.
- Command Syntax:
- findsym(S)
- Displays all symbolic variables found in S , in alphabetical order.
- findsym(S,n)
- Displays the first n symbolic variables found in S, in default order
\square Default order for one letter variables: Start from x and list the others in the order of their closeness to x.

subs command

- To substitute a variable in a symbolic expression we use the command subs. Consider the following example:
- syms x y;
$\mathrm{f}=2^{*} \mathrm{x}+\log (\mathrm{y})$;
subs(f,x,2);
ans $=4+\log (y)$
subs(f,[xy],[2 I])
ans $=4$
- The Factor command:
- sym x
$\mathrm{G}=-\mathrm{I} / 2 * \exp (-x) * \cos (\mathrm{x})-\mathrm{I} / 2 * \exp (-\mathrm{x}) * \sin (\mathrm{x})$
factor(G)
ans $=-1 / 2^{*} \exp (-x)^{*}(\cos (x)+\sin (x))$
- See also: expand, simplify, pretty.

Solving equations (Symbolic)

- Solving algebraic equations.
- Example (2 equations, 2 unknowns)

$$
\begin{aligned}
& \text { l }[x y]=\text { solve('2*x } x+a * y-I=0 \text { ','b*x+2*y=0') } \\
& x=-2 /\left(b^{*} a-4\right) \\
& y=1 /(b * a-4) * b
\end{aligned}
$$

- Solving Differential equations:
- 'Dn' represents the $\mathrm{n}^{\text {th }}$ order derivative operator
- Consider the Example: $x^{\prime \prime}+a^{2} x=0, I C: x(0)=I, x^{\prime}(0)=1$
> $x=$ dsolve('D $2 x+a^{\wedge} 2^{*} x=0$ ' $\left.^{\prime}, x(0)=I, D x(0)=I '\right)$
$x=1 / a^{*} \sin \left(a^{*} t\right)+\cos \left(a^{*} t\right)$

Calculating Derivatives (Symbolic)

- Partial Derivatives. Consider the function given by: - $f=\sin \left(x^{\wedge} 2+y\right)$
- Partial derivative w.r.t. x
- $f=x=\operatorname{diff}(f, x)$ $f _x=2 * \cos \left(x^{\wedge} 2+y\right)^{*} x$
- $2^{\text {nd }}$ Partial derivative w.r.t. x
- $f 2 _x=\operatorname{diff}(f, x, 2)$
f2_x $=-4^{*} \sin \left(x^{\wedge} 2+y\right)^{*} x^{\wedge} 2+2 * \cos \left(x^{\wedge} 2+y\right)$

Calculating Integrals (Symbolic)

- Integration. Consider the function given by: - $\mathrm{f}=\sin (\mathrm{x}) * \exp (-\mathrm{x})$
- Definite integral (i.e. Integrate $f(x)$ over the range $[0,2]$) - $F=i n t(f, x, 0,2)$
$\mathrm{F}=-\mathrm{I} / 2 * \exp (-2) * \cos (2)-\mathrm{I} / 2 * \sin (2) * \exp (-2)+\mathrm{I} / 2$
- Indefinite Integral
- $G=i n t(f, x)$
$\mathrm{G}=-\mathrm{I} / 2 * \exp (-\mathrm{x}) * \cos (\mathrm{x})-\mathrm{I} / 2 * \sin (\mathrm{x}) * \exp (-\mathrm{x})$

Inline function

- Used for multivariable expressions.
- Returns a function that takes several arguments.As an example:
- D=inline('2*x*y+sin(x)','x','y')
$D=$ Inline function:

$$
D(x, y)=2 * x^{*} y+\sin (x)
$$

- $D(1,2)$
ans $=4.84 \mathrm{I} 5$

